Termination w.r.t. Q of the following Term Rewriting System could be proven:
Q restricted rewrite system:
The TRS R consists of the following rules:
norm(nil) → 0
norm(g(x, y)) → s(norm(x))
f(x, nil) → g(nil, x)
f(x, g(y, z)) → g(f(x, y), z)
rem(nil, y) → nil
rem(g(x, y), 0) → g(x, y)
rem(g(x, y), s(z)) → rem(x, z)
Q is empty.
↳ QTRS
↳ DirectTerminationProof
Q restricted rewrite system:
The TRS R consists of the following rules:
norm(nil) → 0
norm(g(x, y)) → s(norm(x))
f(x, nil) → g(nil, x)
f(x, g(y, z)) → g(f(x, y), z)
rem(nil, y) → nil
rem(g(x, y), 0) → g(x, y)
rem(g(x, y), s(z)) → rem(x, z)
Q is empty.
We use [23] with the following order to prove termination.
Lexicographic Path Order [19].
Precedence:
f2 > nil > [norm1, 0, s1]
f2 > g2 > [norm1, 0, s1]
rem2 > nil > [norm1, 0, s1]
rem2 > g2 > [norm1, 0, s1]